Coronary Angiogram: Tips and Tricks for doing procedures

“Independently and Safely”

Dr. Kam Tim, Chan

Queen Elizabeth Hospital
HKCC / HKPHCA
Hong Kong
July, 2018
Conflicts of Interest

• I have **NOTHING** to disclose concerning this presentation
Coronary angiography remains the gold standard for detecting clinically significant atherosclerotic coronary artery disease.
Indications for Coronary Angiogram

1/ Diagnosis of CAD in clinical suspected patients

2/ Peri-interventional information to PCI

3/ Study Coronary anomalies

4/ Exclude CAD before non-coronary cardiac surgery
 e.g. Valve surgery > 40 yrs of age

5/ Determine patency of CABG

6/ NSTEMI- ACS with high risk features e.g. ongoing ischemia;
 High Grace Score; unstable hemodynamics

7/ STEMI – to Primary PCI
Contraindication: Coronary Angiogram

There are no absolute contraindications to cardiac catheterization.

Relative contraindications include:
- Coagulopathy (Radial approach can be attempted based on urgency)
- Decompensated congestive heart failure

- Uncontrolled hypertension
- Pregnancy
- Unable to get patient cooperation
- Active infection
- Renal failure
- Contrast medium allergy
The BASICS

• Standard VIEWS for Coronary Angiogram
Rt System Imaging

RCA view

LAO VIEW
- Best for demonstrating:
 1. Ostium of the RCA
 2. Mid-portion of RCA
 3. Bifurcation of the posterolateral branch (PL) and the posterior descending branch (PDA)

RAO VIEW
- Best for demonstrating:
 1. Mid-portion of the RCA
 2. Extent of the PDA
 3. Ostium is not well imaged in this view.
Left System Imaging

RAO Caudal view is best for:

1. Distal Left Main Stem (LMS)
2. Proximal segment of the LAD
3. Circumflex artery (Cx) and its branches (OMs)
Left System Imaging

RAO Cranial view is best for the LAD and diagonal branches.
Left System Imaging

LAO Cranial View: Best demonstrating

1. Ostium of the LMS
2. Origin of the diagonals from the LAD
Left System Imaging

LAO Caudal View (SPIDER VIEW): Best for

1. Distal LMS
2. Proximal LAD
3. Proximal Circumflex artery
4. Ramus Intermedius branch (RI)
Left System Imaging

LAO (90°) Straight (Lateral) View: shows the Mid-LAD and the Circumflex arteries
• Interpretation of Coronary Angiogram
A systematic interpretation of a coronary angiogram would involve:

- Evaluation of the extent and severity of coronary calcification just prior to or soon after contrast opacification
- Lesion quantification in at least 2 orthogonal views:
 - Severity
 - Calcification
 - Presence of ulceration/thrombus
 - Degree of tortuosity
 - ACC/AHA lesion classification
 - Reference vessel size
 - Distal vessels (graftable or not)
 - Bifurcation/trifurcation stenosis
 - Grading TIMI myocardial perfusion blush grade
 - Identifying and quantifying coronary collaterals
Coronary Artery Dominance

• **Coronary arterial dominance** is defined by the vessel which gives rise to the POSTERIOR DESCENDING ARTERY (PDA), which supplies the myocardium, the area of the inferior 1/3rd of the interventricular septum.

• Most hearts (80-85%) are **right dominant** where the PDA is supplied by RCA. The remaining 15-20% of hearts are divided between left dominant and codominant.
Right Dominance

Figure 3
Normal Coronary Anatomy
Right Dominant (85%)

Right Coronary Dominant Illustration
RCA = right coronary;
RPDA = right posterior descending;
RPL = right posterior lateral;
LM = left main;
LPL = left posterior lateral;
LAD = left anterior descending;
LCx = left circumflex;
D = diagonals;
S = septals;
OM = obtuse marginals.

Courtesy of Cathsource. Temple, TX.
Normal Coronary Anatomy

Left Dominant (7%)

CO- DOMINANCE

Normal Coronary Anatomy

Co-Dominant (8%)
TIMI – Flow grade

- **TIMI –0- No perfusion** – No antegrade flow beyond occlusion
- **TIMI -1- Penetration without perfusion** – Contrast hangs up beyond the obstruction and fails to opacify the distal bed during cine
- **TIMI -2- Partial perfusion** – Contrast fills the distal tree but clearance is slower when compared to normal neighbouring arteries
- **TIMI -3- Complete perfusion** – Antegrade flow is as prompt as proximal bed and clearance as rapid as uninvolved bed
Myocardial Perfusion Score – The BRUSH GRADE

◆ Grade 0: Either minimal or no ground glass appearance (“blush”) of the myocardium in the distribution of the culprit artery

◆ Grade 1: Dye slowly enters but fails to exit the microvasculature. Ground glass appearance (“blush”) of the myocardium in the distribution of the culprit lesion that fails to clear from the microvasculature, and dye staining is present on the next injection (approximately 30 seconds between injections)

◆ Grade 2: Delayed entry and exit of dye from the microvasculature. There is the ground glass appearance (“blush”) of the myocardium that is strongly persistent at the end of the washout phase (i.e. dye is strongly persistent after 3 cardiac cycles of the washout phase and either does not or only minimally diminishes in intensity during washout).

◆ Grade 3: Normal entry and exit of dye from the microvasculature. There is the ground glass appearance (“blush”) of the myocardium that clears normally, and is either gone or only mildly/moderately persistent at the end of the washout phase (i.e. dye is gone or is mildly/moderately persistent after 3 cardiac cycles of the washout phase and noticeably diminishes in intensity during the washout phase), similar to that in an uninvolved artery.
AHA/ACC - Lesion Classification

<table>
<thead>
<tr>
<th>Characteristics of ACC/AHA Type A, B and C lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE A LESIONS: (High success, > 85%; low risk)</td>
</tr>
<tr>
<td>Discrete (<10 mm length)</td>
</tr>
<tr>
<td>Concentric</td>
</tr>
<tr>
<td>Readily accessible</td>
</tr>
<tr>
<td>Nonangulated segment <45 degrees</td>
</tr>
<tr>
<td>Smooth contour</td>
</tr>
<tr>
<td>TYPE B LESIONS(Moderate success, 60 to 85%; moderate risk)</td>
</tr>
<tr>
<td>Tubular (10-20 mm length)</td>
</tr>
<tr>
<td>Eccentric</td>
</tr>
<tr>
<td>Moderate tortuosity of prox.segment</td>
</tr>
<tr>
<td>Moderately angulated, 45-90°</td>
</tr>
<tr>
<td>Irregular contour</td>
</tr>
<tr>
<td>Moderate to heavy calcification</td>
</tr>
<tr>
<td>TYPE C LESIONS(low success, < 60%; high risk)</td>
</tr>
<tr>
<td>Diffuse (>2 cm length)</td>
</tr>
<tr>
<td>Excessive tortuosity of prox.segment</td>
</tr>
<tr>
<td>Extremely angulated, >90 degrees</td>
</tr>
<tr>
<td>Inability to protect major side branch</td>
</tr>
<tr>
<td>Grade</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>
TIMI Grade of Collateral Filling

- **TIMI Grade 1 Collaterals (Absent)**

 absence of any collaterals to occluded vessel supplying the area of infarct

- **TIMI Grade 2 Collaterals (Minimal)**

 collaterals resulting in faint opacification to a diameter not exceeding 1 mm in occluded vessel or its branches, visualized distal to the obstruction in occluded vessel supplying the area of infarct

- **TIMI Grade 3 Collaterals (Well Developed)**

 collaterals resulting in full opacification to a diameter > 1 mm in occluded vessel or its branches, visualized distal to the obstruction in occluded vessel supplying the area of infarction
TIPS and Tricks for Performing Good Coronary Angiogram

• Proper Catheters Selection for Cannulation

• Understand the Anatomy and Variation
Frequently used catheters for diagnostic trans-radial coronary angiogram

- Tiger
- Jacky
- Amplatz left
- LCB
- RCB
- Judkins left
- Judkins right
- Multipurpose A2
- IM
- 3D LIMA
- IM VB-1
More than 250 Catheters!

Understand and Familiar with YOUR Workhorse Diagnostic catheters
NORMAL Coronary Artery

- The coronary artery arises just superior to the aortic valve and supply the heart.

- The aortic valve has three cusps -
 - left coronary (LC),
 - right coronary (RC)
 - posterior non-coronary (NC) cusps.
Coronary Artery OSTIUM – Anatomical Variation

Coronary ostial location:
- high
- low
- anterior
- posterior

Coronary ostial orientation:
- superior
- horizontal
- inferior
- shepherd’s crook (RCA’s only)
Aortic width

- Narrow: < 3.5 cm
- Normal: 3.5 - 4.0 cm
- Dilated: > 4.0 cm
Selection of Catheters

- *MOST IMPORTANT REQUIREMENT: CO-AXIAL ALIGNMENT*

- VITAL PRINCIPLE

- Non-Coaxial

- Coaxial
AORTIC WIDTH determine the CURVE

Co-axial alignment with 45^0 at the primary curve and the secondary curve buttressing at the C/L wall

Curve length = distance between P (primary curve) & S (secondary curve)

- Aortic diameter determines the curve length
JUDKINS Catheters

- Selected according to
 - width of the ascending aorta
 - location of the ostia to be cannulated
 - orientation of the coronary artery segment proximal to the target lesion

- Segment between the primary and secondary curve of Judkins left guide should fit width of ascending aorta
 - ex: 3.5 cm, 4 cm, 4.5 cm
LCA- HIGH Left TAKEOFF

AL 1.5

EBU 3.5
RCA- Diagnostic Catheters Selection

- **Judkins Right**
 - JR3
 - JR3.5
 - JR4, JR4ST (Short Tip)
 - JR5
 - JR6
- **Amplatz**
 - AR1, AR2
- **Hockey Stick**
- **Multi Purpose (MPA)**
Selection and Support of Guide Catheters

More x PCI

- **Standard guide** for most patients; Minimal support
 - Catheters reside above or barely in Sinus of Valsalva
 - JL, JR, LCB, RCB

- **Support derived from Sinus of Valsalva**
 - Catheters reside deep in ipsilateral Sinus of Valsalva
 - AL, AR, Hockey stick, El Gamal, Champ, MP

- **Power guides, Extra support**
 - Maximum support derived from opposite wall of aorta
 - Voda®, XB, EBU, Arani
Support of Various Guiding Catheters

- **JR4**: Simple coaxial alignment, without support.
- **Hockey Stick**: Coaxial alignment, with extra support from Sinus of Valsalva.
- **EBU**: Coaxial alignment, with power support from opposite wall of aorta.
GUIDE Catheter with Extra Backup Support

- Long tip forms a fairly straight line with the LM axis or the proximal ostial RCA

- Long secondary curve - abut the opposite aortic wall

- So tip in the coronary artery is not easily displaced
- Provide a very stable platform
Solution to Difficult RCA Cannulation

a) Normal RCA origin → JR4 guiding catheter

b) Slightly anterior RCA origin → hockey stick guiding catheter

c) Significantly anterior RCA origin → Amplatz left guiding catheter (in a rotated plane)
SHEPHERD’S CROOK
Shepherd’s crook deformity of RCA

Dramatic upturn with a near 180 degree switch back turn

- Arani 75° - Support from aorta
- Amplatz - Support from sinus
- El Gamal, Hockey Stick - Support from sinus
- Right Voda - Support from aorta
- JR4 - Avoid; no support
HOCKEY STICK
Catheter
Techniques for Cannulating CABG Grafts

Saphenous Vein Bypass Grafts

In general, saphenous vein bypass grafts are anastomosed to the anterior wall of the ascending Aorta.

The right coronary artery graft usually is anastomosed a few centimeters above and anterior to the right coronary orifice.

Left anterior descending and diagonal grafts usually are anastomosed somewhat higher and slightly to the left.

Obtuse marginal grafts are usually the highest and furthest left.
Catheters for Saphenous Vein grafts

- Multipurpose
- Multipurpose or Right Judkins
- Hockey Stick or Amplatz Left
- Hockey Stick
Catheters for Saphenous Vein grafts

Optimal guide catheter selection for vein grafts to the distal right coronary artery or distal left dominant circumflex artery:
- Primary: Multipurpose
- Alternate: Judkins Right (JR), Amplatz Left (AL), Right Bypass

If graft has more anterior take-off:
- Primary: AL
- Alternate: JR, Multipurpose, Hockey Stick

Optimal guide catheter selection for vein grafts to the left coronary artery:
- Primary: JR, Hockey Stick
- Alternate: AL, Left Bypass, Multipurpose

If graft has more anterior take-off:
- Primary: AL, Hockey Stick
- Alternate: JR, Left Bypass, Multipurpose

LAO 40°
Techniques for Cannulating IMA Grafts

Internal Mammary Artery Graft Cannulation

The left internal mammary artery (IMA) originates anteriorly from the caudal wall of the subclavian artery distal to the vertebral artery origin.

The left subclavian artery can be entered using a right Judkins catheter but a more sharply angled catheter tip on the mammary artery catheter is preferred.

The right Judkins or IMA catheter is advanced into the aortic arch up to the level of the right brachiocephalic truncus with the tip directed caudally.

Subsequently, the catheter is withdrawn slowly and rotated counterclockwise.
Techniques for Cannulating IMA Grafts

Internal Mammary Artery Graft Cannulation

The catheter tip is deflected cranially, usually engaging the left subclavian artery at the top of the aortic knob in the anteroposterior projection.

Once the subclavian artery is engaged, the catheter is advanced over a J-tipped or flexible straight tip guidewire beyond the internal mammary orifice.

After the catheter has been advanced beyond the internal mammary artery takeoff, the guidewire is withdrawn slowly and small contrast injections are given to visualize the internal mammary artery orifice.

Because of the peculiar tip configuration, the internal mammary curve catheter and especially the C-type IMA catheter usually engages into the IMA ostium without much difficulty.
Right Internal Mammary Artery Graft Cannulation

Right internal mammary artery cannulation is less common and more difficult than left internal mammary artery cannulation.

The right brachiocephalic truncus is entered using a right Judkins catheter by deflecting the tip with a counterclockwise rotation at the level of the brachiocephalic truncus.

The catheter is advanced into the subclavian artery.

The rest of the manipulation is similar to that described for left internal mammary artery graft cannulation.
Techniques for Cannulating IMA Grafts

Right Internal Mammary Artery Graft Cannulation

In patients for whom cannulation of the internal mammary artery is not possible because of excessive tortuosity or obstructive lesions, an internal mammary artery catheter can be introduced through the ipsilateral radial artery.

The catheter is advanced beyond the mammary artery orifice over a guidewire.

Withdrawing it slowly and making frequent, small contrast injections engage the catheter.

A technique for cannulation of the contralateral internal mammary artery from the arm approach using a Simmons catheter also has been described.
Understand the Vascular Access Anatomy
Femoral Anatomy

Fluroscopy Guided
or
USG Guided

Others:
- Ulnar / Brachial
- Snuffbox
- Slender Club etc
FIGURE 7-2 Differential catheter course through transfemoral (A) and transradial (B) vascular access. Because of the curvature between the brachiocephalic trunk and the ascending aorta, a shorter secondary curve, usually by 0.5 cm, is needed for successful cannulation of the LCA with a JL catheter. The operators should use a JL 3.5 (B) instead of a JL 4.0 (A). (Courtesy of Medtronic.)

FIGURE 7-3 Effect of Inspiration. A: During expiration there is a more acute angle (a) between the brachiocephalic trunk and the ascending aorta; therefore, the wire takes a more horizontal direction toward the descending aorta. B: During deep inspiration, the diaphragm lowers the heart and straightens the angle (a) between the brachiocephalic trunk and the ascending aorta. The wire takes a more vertical direction toward the ascending aorta.
Anatomical Variants – Radial Artery

<table>
<thead>
<tr>
<th>Anatomical variants</th>
<th>Number of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of patients with anomalies</td>
<td>1114 (10.6%)</td>
</tr>
<tr>
<td>High bifurcating origin of the radial artery from the brachial or axillary arteries</td>
<td>733 (7%)</td>
</tr>
<tr>
<td>Radial artery loop (360°)</td>
<td>105 (1%)</td>
</tr>
<tr>
<td>Radial artery tortuosity</td>
<td>152 (1.4%)</td>
</tr>
<tr>
<td>Hypoplastic radial artery</td>
<td>17 (0.16%)</td>
</tr>
<tr>
<td>Loop of the brachial/axillary/subclavian artery</td>
<td>113 (1.0%)</td>
</tr>
<tr>
<td>Anomalies of the aortic arch</td>
<td>6 (0.05%)</td>
</tr>
<tr>
<td>Retroesophageal right subclavian artery (a. Lusoria)</td>
<td></td>
</tr>
</tbody>
</table>
Radial artery loop

- 1% according our data
- The loop consists of a tight retrograde bend of the radial artery before joining the ulnar artery in the forearm
Radial Artery – Anatomical Variation

- Alpha shape radial artery (A)
- S shape radial artery (B)
- Omega shape radial artery (C)
- Brachial alpha loop (D)
- High origin radial artery (E)
- Subclavian artery tortuosity (E)
- Subclavian artery tortuosity (F)
The Learning Curve: Transradial Pitfalls

- Getting access
- Radial Artery Spasm
 - Prevention and management
- Anatomical Variations
 - Tortousity, vascular anomalies
- Transversing the subclavian – Rt vs. Lt
 - Respiration maneuvers
 - Need for TF conversion (Trans-Femoral)
- Catheter shape selection for cannulation
- Catheter control and backup support
- “Patent Haemostasis” after pulling out the sheath
Trans-radial is not feasible in \(~5-10\%\)
(Reduce wrist to femoral crossover to \(~0.3\%*)

1. Anatomical variations: hypoplastic radial artery
2. Loops (radial, brachial, axillary, innominate) tortuosity
3. Stenosis & calcifications
4. Spasm or Pain (females with larger sheaths & guides)
5. Occluded / stenosed radial from previous PCI
6. Planned radial shunt or radial CABG

*Baumann F, Roberts JS. Evolving Techniques to Improve Radial/Ulnar Artery Access: Crossover Rate Catheterization and/or Percutaneous Coronary Intervention via the Wrist. J Interv Cardiol. 2015 Aug;28(4):396-404 0.3% in 1,000 Consecutive Patients Undergoing Cardiac.
Arteria Lusoria

- Most common **Aortic ARCH Anomaly**
- In 0.5 to 2.5%
- **Aberrant** Rt subclavian artery - course upwards and to the right in posterior mediastinum
- Usually **Asymptomatic**
- Or dysphagia lusoria; dyspnea, chronic cough
- Treatment is indicated for symptomatic relief of dysphagia lusoria and prevent complications due to aneurysmal dilatation
Arteria Lusoria
Figure 1: Primary PCI through right trans ulnar access for a case of arteria lusoria.
Myocardial Bridging

Intramycocardial Segment

- Almost always LAD
- Systolic compression of the vessel, diastolic relaxation of the vessel
- Occurs in 5-12% of patients
- Usually NOT hemodynamically significant
- Usually NOT the cause of chest pain

Myocardial Bridge

- Segment of a major coronary epicardial coronary artery that *dives intramurally* through the myocardium beneath the muscle bridge.\(^1\)
- Generally involving **LAD** and its diagonal branches
- Frequency
 - Coronary angiographic series: **0.5-16%**
 - Pathological series up to 85%. \(^1,2\)
- Superficial and deep variants

\(^1\) Alegria et al Eur Heart Journal 2005; 26:1159-1168
\(^2\) Ge et al Eur Heart Journal 1999; 20:1707-1716
Myocardial Bridging

Angiographic and intravascular ultrasound images before (A, D) and after (B, E) stent implantation; stent collapse after seven weeks (C, F) and unsuccessful re-PTCA with high pressure insufflation (G).

Haager et al. Heart 2000;84;403-8
Coronary Arterial Fistula

- Origin ~ 50% from the RCA.
- Clinical Syndromes: CHF, endocarditis, ischemia, and rupture of aneurysmal fistula. 50% are asymptomatic.
- Drainage: RV-41%; RA-26%; PA-17%; LV-3%, and SVC-1%.
- Be able to recognize the presence of a fistula on a coronary angiogram

LAD to PA Fistula
Anomalous Coronary Arteries

- Normal
- LM from RCC
- RCA from LCC
Coronary Anomalies

Incidence

<table>
<thead>
<tr>
<th>Condition</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronary anomalies (total)</td>
<td>110</td>
<td>5.64</td>
</tr>
<tr>
<td>Split RCA</td>
<td>24</td>
<td>1.23</td>
</tr>
<tr>
<td>Ectopic RCA (right cusp)</td>
<td>22</td>
<td>1.13</td>
</tr>
<tr>
<td>Ectopic RCA (left cusp)</td>
<td>18</td>
<td>0.92</td>
</tr>
<tr>
<td>Fistulas</td>
<td>17</td>
<td>0.87</td>
</tr>
<tr>
<td>Absent left main coronary artery</td>
<td>13</td>
<td>0.67</td>
</tr>
<tr>
<td>Circumflex arising from right cusp</td>
<td>13</td>
<td>0.67</td>
</tr>
<tr>
<td>LCA arising from right cusp</td>
<td>3</td>
<td>0.15</td>
</tr>
<tr>
<td>Low origination of RCA</td>
<td>2</td>
<td>0.1</td>
</tr>
<tr>
<td>Other anomalies</td>
<td>3</td>
<td>0.27</td>
</tr>
</tbody>
</table>
Benign Anomalous Coronary Arteries (0.5 to 1 %)

- Left Circumflex from right Sinus of Valsalva
 - Most common “benign” anomaly
 - Circumflex courses behind aorta

- High Anterior Origin of RCA
 - Above sinotubular ridge
Threatening Anatomy

Aorta

RCA

LCx

LMCA

LAD

PA

R

L

A

B

RCA

LCx

LAD

PA

B
Left Main From The Right Coronary Cusp

- Classified according to the course of the left main
- 60% will go between the aorta and pulmonary artery
- Anatomy clearly associated with sudden death
Dual Coronary Ostia

LAD

LCX
Coronary Artery Aneurysms

- Coronary Aneurysm: Vessel diameter > 1.5x neighboring segment
- Incidence: 0.15%-4.9%; very rare in LMCA
- Etiology: mainly atherosclerosis; other causes include Kawasaki’s, PCI, inflammatory disease, trauma, connective tissue disease
- Treatments: include observation, surgery, occlusive coiling, covered stents
Table 2. TIMI Thrombus Grade

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No cineangiographic characteristics of thrombus present.</td>
</tr>
<tr>
<td>1</td>
<td>Possible thrombus present. Angiography demonstrates characteristics such as reduced contrast density, haziness, irregular lesion contour or a smooth convex “meniscus” at the site of total occlusion suggestive but not diagnostic of thrombus.</td>
</tr>
<tr>
<td>2</td>
<td>Thrombus present, small size: Definite thrombus with greatest dimensions less than or equal to 1/2 vessel diameter.</td>
</tr>
<tr>
<td>3</td>
<td>Thrombus present, moderate size: Definite thrombus but with greatest linear dimension greater than 1/2 but less than 2 vessel diameters.</td>
</tr>
<tr>
<td>4</td>
<td>Thrombus present, large size: As in Grade 3, but with the largest dimension greater than or equal to 2 vessel diameters.</td>
</tr>
<tr>
<td>5</td>
<td>Total occlusion.</td>
</tr>
</tbody>
</table>

Sources:
1. The TIMI-III Investigators. Early effects of tissue-type plasminogen activator added to conventional therapy on the course of non- q-wave myocardial infarction with ischemic cardiac pain at rest. *Circulation* 1993;87:38–52.

Image:
- **Thrombus Grade 4**
• Prevention and Management of Complications due to Coronary Angiogram
Coronary Angiogram Complications

- Death
- AMI
- Arrhythmia
- CVA
- Bleeding
- Hematoma (Retroperitoneal)
- Vascular Injury
- Contrast induced AKI
- Allergy/Anaphylaxis
- Pulmonary odema
- **AIR/CLOT embolism**
- Vagal reaction
<table>
<thead>
<tr>
<th>Risk</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>0.11</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>0.05</td>
</tr>
<tr>
<td>Cerebrovascular accident</td>
<td>0.07</td>
</tr>
<tr>
<td>Arrhythmia</td>
<td>0.38</td>
</tr>
<tr>
<td>Vascular complications</td>
<td>0.43</td>
</tr>
<tr>
<td>Contrast reaction</td>
<td>0.37</td>
</tr>
<tr>
<td>Hemodynamic complications</td>
<td>0.26</td>
</tr>
<tr>
<td>Perforation of heart chamber</td>
<td>0.28</td>
</tr>
<tr>
<td>Other complications</td>
<td>0.28</td>
</tr>
<tr>
<td>Total of major complications</td>
<td>1.70</td>
</tr>
</tbody>
</table>

Coronary Angiogram - Mortality

- Rare – less then 0.1%\(^1\)
- **High risk group**
 - Age >60 years and <1 year
 - Female
 - NYHA IV heart failure (10 times increase risk than Class I and II)
 - Severe LMCA (20 times higher than SVCAD)\(^2\)
 - LVEF <30%
 - Patient with valvular heart disease, CKD, DM requiring insulin therapy, peripheral arterial disease, pul insufficiency, cerebrovascular disease

MAJOR COMPLICATIONS

- The risk of producing a major complication (death, myocardial infarction, or major embolization) during diagnostic cardiac catheterization is generally less than 1%
- Risk of adverse events depends upon
 - Demographic (age, gender)
 - Cardiovascular anatomy (left main coronary artery disease, severe AS, diminished LV function)
 - Clinical situation (Unstable angina, Acute MI, cardiogenic shock)
 - Comorbidities
 - Experience of operator
 - Peripheral arterial disease
MAJOR COMPLICATIONS

- The risk of producing a major complication (death).

ASK FOR HELP PLEASE IF MAJOR COMPLICATION OCCUR!!

- Demographic (age, gender)
- Cardiovascular anatomy (left main coronary artery disease, severe AS, diminished LV function)
- Clinical situation (Unstable angina, Acute MI, cardiogenic shock)
- Comorbid diseases
- Experience of operator
- Peripheral arterial disease
Potential Access Site Complications

eg. Trans-radial approach

- Radial artery occlusion
- Radial artery spasm
- Persistent post procedural pain
- Upper Limb – Loss of strength
- Haematoma
- Pseudo aneurysm/ AV Fistula
- Radial/ Brachial artery perforation
- Radial artery eversion during sheath removal
- Hand ischemia
- Compartment Syndrome
Pre-operative Assessment

• **NEVER NEVER NEVER** START a Procedure Without **KNOWING** the Patient
 (Study the Notes (Hx ; Relevant investigations ; EF; Indications/ Contraindications etc)

• Proper TIME In/ Out procedures

• **GOOD Planning**

Though procedures may seen “ ROUTINE ” ;
There is “ **NO ROUTINE** ” procedures
Practical Tips and Tricks

• Usg / Fluro guidance for vascular access
• Use of Terumo Radifocus GW to overcome tortuosity
 (CAUTION - NOT move Terumo GW within the puncture needle → Unsheathing of polymer coating and Embolization)
 - MUST WATCH the TIP of Terumo GW (It can go ANYWHERE !!!)
• Use 0.014/0.018 PCI Guidewires for difficult crossing +/- microcatheter
• Frequent regular flushing (3 minutes rules)
 - to Prevent Thrombus
Heparin in Diagnostic Coronary Angiogram

- Indicated in Radial / Brachial route
- For **Femoral access**: RCT compare heparin 5000u vs 2000u vs **NO** heparin (Speedy procedures < 30 mins) → **NO differences** in thrombotic Cxs

NB> Extreme Caution in Difficult / Lengthy Cases eg. CABG; Challenging anatomies; crossing AS

MOST Important Safety Concern

- It is essential that the catheter tip does not wedge into a narrow coronary ostium and cause occlusion of flow.
- The catheter tip must be axially oriented in proximal vessel rather than being angulated against the side wall, which may cause intimal damage.
- Contrast injection with catheter tip impacted to side wall of coronary artery can cause osital dissection.
- Above mentioned are the fatal complications.
Contrast Staining at LMN?

Guide Catheter – Deep seat POOR alignment

- Realign the Guide:
 - Good Flow, No contrast staining
- Patient – NO Symptoms at all
IVUS to CLARIFY

What is the Diagnosis?

LMN INTRAMURAL HEMATOMA
An example of what you should NOT do

- Must Be VERY **OBSESSIVE / Meticulous** about Pressure Tracing

- **CAUTION**: NEVER NEVER Inject **WITHOUT** LOOKING AT the PRESSURE Tracing !!
PLEASE LOOK at Pressure TRACING

- Beware of DAMPI MG or Ventricularization !!!
- May be Live and Death Issue

BEWARE of Massive AIR EMBOLISM !!
- in 0.2%
- Sentinel Event
- VERY Meticulous in Preparation of Manifold (AIR –tight)
- Caution in Injection (upright syringe etc)
- Attention to Contrast Bottle
- NEVER Give up in Resuscitation
Caution with Amplatz Catheters / Guide

- Selection of the proper size for an Amplatz guide is essential
 - Size 1 is for the smallest aortic root
 - size 2 for normal
 - size 3 for large roots

- Attempts to force engagement of a preformed Amplatz guide that does not conform to a particular aortic root increase risk of complication

- If tip does not reach the ostium and keep lying below it - guide is too small

- If tip lies above the ostium - guide is too large

- When RCA ostium is very high - left Amplatz guide may be used to engage the right ostium
Caution- Amplatz Catheter Withdrawal

• Must be carefully disengaged from the coronary artery

• A simple withdrawal from the vessel can cause the tip to advance farther into the vessel and cause dissection

• To disengage - first advance guide slightly to prolapse the tip out of the ostium

• Then rotate the guide so that tip is totally out of the ostium before withdrawing it.
Retroperitoneal Hematoma

- Infrequent but **serious complication** of Transfemoral procedures
- Incidence of approximately 0.5%
- Mortality 4-12%
- Higher 30-day mortality in RPH after PCI
- Severe Morbidity

Risk Factors: low body weight, female; emergency procedure, pre and post procedure heparin, pre-procedure IIb/IIIa inhibitors, and **HIGH Puncture** above the mid femoral head/ Inguinal ligament; **DOUBLE wall** puncture
RPH - Clinical Features

• Presentation varies and may be vague

• Diagnosis delayed since retroperitoneum - non-compressible area where large amount of blood accumulate rapidly without causing obvious stigmata of underlying expanding hematoma

• No cutaneous bruising early in the course

• Common clinical features were lower abdominal pain and fullness, back or flank pain, diaphoresis abdominal tenderness, bradycardia, hypotension and anemia

• **High Index of Suspicion** Needed
RPH- Complications

• Hypovolemic shock, need blood transfusion and increase length of stay

• **Abdominal Compartment Syndrome**:
 - Rare but serious complication
 - Often present as acute renal failure with severe abdominal pain, distention causing respiratory distress and cardiovascular collapse
 - Emergent surgical or CT-guided drainage

• Femoral neuropathy - weakness of iliopsoas (hip flexion) and quadriceps (knee extension) muscles and dysesthesia involving anterior/medial thigh and medial calf

• Majority resolve with conservative therapy but severe cases may require surgical decompression
Management of Retroperitoneal Hematoma

Hemodynamic stability

- CT scan to confirm diagnosis and assess hematoma size.
- Continued hemodynamic stability.
- Monitor in the ICU/monitor hematocrit.

Hemodynamic instability

- Reverse anticoagulation if possible.
- Return to cath lab and do angiogram of the affected side through a contralateral approach via a crossover technique to identify the bleeding site.
- If active bleeding is identified place a 0.035 in. guidewire distal to the affected vessel. Place either a guide catheter or a crossover sheath and perform balloon tamponade.
- Give volume, blood or pressors if needed to establish stability.

Time to assess further treatment plan
a. Coil embolization or possible thrombin injection if the inferior epigastric vessel has been lacerated.
b. Consideration of covered stent
c. Surgical consultation if interventional techniques fail
Contrast Induced - Acute Kidney Injury

- Contrast induced Nephropathy
- **Definition**: 25% increase in Serum Cr from baseline OR 0.5mg/dL (44umol/L) increase in Absolute Value within 48-72 hrs after IV contrast
- **Mehran Risk Score**: 8 variables: Hypotension, IABP, CHF, CKD, DM, AGE>75 yrs, Anemia, Contrast Volume
Prevention of CIN

- Strongest predictors of CI-AKI: DM; CrCl; Contrast Volume
- ADEQUATE IV Volume Expansion / Prehydration with isotonic NaCl or Na HCo3
- Oral N-Acetylcysteine (? Controversial Data)

Extra Caution in Impaired Renal function:
- Biplane
- Ultra-low Contrast usage (just for Adequate opacification)
- Low or iso-osmolar contrast
- Smaller diameter catheters
- Staged procedures

* Complex CTO w Retrograde approach (just < 10 – 15 ml contrast used !!)
 (IVUS guidance; Previous Angiogram references; Co-registration etc)
Maximum Allowable Contrast Dose - MACD

- Healthy adult individuals, the maximum allowable volume of intravenous **iodine** contrast is:
 \[\leq 300 \text{mL} \text{ (with Iodide concentration 300mg /mL)} \]
- Patients with renal insufficiency - As low as reasonable (ALARA) principle
 Should not exceed:
 \[
 440 \times \text{Bwt (kg)} / \text{creatinine (\(\mu\text{mol/L}\) \text{ mL}}
 5 \times \text{Bwt [kg]} / \text{creatinine (mg/dL) \text{ mL}}
 \] (with concentration 300mg Iodine /mL)

Others:

Use **Ratio of Contrast Volume/ Cr CL**: (Should be < 3) for PCI procedures
- The Lower; The Better
Words to Live By:

A Non-Diagnostic Angiogram Should be Considered a Cath COMPLICATION

Ajay Kirsten; USA
Pitfalls of Coronary Angiogram

1. Inadequate vessel opacification - May give impression of ostial stenoses, missing side branches or thrombus.

2. Eccentric stenosis - Coronary atherosclerosis often leads to eccentric or slit–like narrowing than central narrowing; so if the long axis of the vessel is projected, the vessel may appear to have a normal or near normal caliber.

3. Superimposition of branches

4. Foreshortening of the stenotic segment due to projectional defect
Pitfalls of QCA LM assessment

- Diffuse atherosclerotic involvement affects the %DS calculation because of the lack of a normal reference segment
- **Short LMCA** also makes identification of a normal reference segment difficult
- Ostial lesion can be miss
 - Guiding engagement; damping of pressure
- Positive remodeling
Patient of Atypical Chest pain, borderline treadmill

ANGIOGRAM: Severe Ostial LMN diseases

CABG done

No improvement of symptoms and SVG Grafts closed very quickly

IVUS – LMN: No significant plaque burden seen !!

ONLY mild diffuse atheroma
Angiographically unrecognized left main coronary artery disease.

IVUS - Severe plaque burden in LMN

EJ Topol et al. Circulation 95:92; 2333-342
Coronary Angiogram

Use Different catheter
Tips and Tricks For Poor Opacification

• Identify Causes
• Proper configuration catheters
• **COXIAL Alignment** - most important
• Huge coronaries - change catheters

 (even Guide catheters)
• Proper/ Constant hand injection techniques

 (**FOCUS** on Pressure Tracing)
• Automatic injector
• Others: IVUS ; OCT etc in special cases
ENDING the Procedure

• **Proper DISENGAGE** the Catheter; Pressure Tracing recorded

• MUST CAREFULLY **REVIEW** **ALL Images** FIRST

• **DECISION MAKING** --- ARE you Going to do CABG or PCI for the patient based on these Images ???
 – Quality of Images
 – Lesions Severity
 – Separate LMN Origin
 – Anomalous origin
 – Conus branches supplying collaterals to occluded vessels
 – Anomaly; AV fistula etc
 – Formulate Management Plan

• Patient Counselling / Explanation / Postop Care / Report
KNOW the Other Alternative Tests

- **Anatomy** : CT Coronary
 MRI Heart
- **Functional** Tests :
 Stress Echocardiography
 Radioactive studies - Sestamibi; thallium
 CT perfusion
 MRI perfusion
 Invasive FFR, iFR
CT Coronary Angiogram

• Minimal invasive test
• Sensitivity and specificity of 95% and 98% respectively
• ? Take over invasive angiogram in diagnostic situations:
 - preop coronary angiogram for valve surgery
 - dilated CMP
 - atypical chest pain with equivocal noninvasive tests
• New Modalities: CT-FFR; CT Perfusion studies
FINAL ADVICE

- Stay Foolish; Stay Hungry
 - by Steve Jobbs; in 2005 - Standford University Graduation ceremony

- Stay Happy; Stay Humble (by KTChan at HK)

- Being Independent Means: You are (独立)
 Responsible; Accountable; Proficient; Professional; Self-Confident; Respectable

 Act as a “TEAM” - Know When to ASK x HELP
 Not ACT arbitrarily!

(不是獨斷獨行!!)
Thank You very much
• ADDITIONAL SLIDES
Rotational Angiogram

- X-ray system rotates around the patient during the acquisition of a single run

- Significant reduction in both contrast agent usage and radiation dose of up to 30%, without compromising image quality

- Contrast medium is injected automatically (3 mL/s for the LCA and 2 mL/s for the RCA) range 12-18 cc

- After this preload, rotation of the C-arm was started automatically and X-rays taken
Possible Solutions to Difficult Right Coronary Guide Catheter Selection

- Hockey Stick
- Amplatz
- Left Venous Bypass Graft
- Arani or XBRCA
Incidence of Radial artery spasm (RAS)

- **22%** (8% on med) - Kiemeneij F, et al (N=100)
 (CCI 2003;58:281–284)

- **22.2%** - The SPAMS study
 (N=1,219)
 (CCI 2006;68:231-235)

- Fukuda, et al diagnosed RAS through radial artery angiography and found that RAS occurred in most patients through transradial approach.
 (Jpn Heart J 2004; 45: 723-731)
What is “Foreshortening?”
Concealment of severe coronary disease by diffuse concentric involvement.
A Word about Radiation Safety

Terms for Radiation Measurement

<table>
<thead>
<tr>
<th></th>
<th>Standard System (Traditional)</th>
<th>Metric Equivalent or Système Internationale (SI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure (C/kg)</td>
<td>Roentgen (R) (3.88 \times 10) R =</td>
<td>Coulomb per kilogram 1 c/kg</td>
</tr>
<tr>
<td>Dose</td>
<td>Radiation absorbed dose (RAD) 100 rads =</td>
<td>Gray (GY) 1 Gy</td>
</tr>
<tr>
<td>Dose equivalent</td>
<td>Radiation equivalent man (REM) 100 rem =</td>
<td>Sievert (Sv) 1 Sv</td>
</tr>
<tr>
<td>Diagnostic procedure</td>
<td>Effective dose (mSv)</td>
<td>Equivalent number of PA chest radiography each (0.02mSv)</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Chest X-ray</td>
<td>0.02</td>
<td>1</td>
</tr>
<tr>
<td>Coronary angiography</td>
<td>7 (2-16)</td>
<td>350 (100-800)</td>
</tr>
<tr>
<td>Percutaneous coronary intervention</td>
<td>15 (7-57)</td>
<td>750 (350-2800)</td>
</tr>
<tr>
<td>Radiofrequency ablation</td>
<td>15 (7-57)</td>
<td>750 (350-2800)</td>
</tr>
<tr>
<td>Dilatation chronic coronary occlusion</td>
<td>81 (17-149)</td>
<td>4050 (850-9600)</td>
</tr>
<tr>
<td>Aortic valvuloplasty</td>
<td>39</td>
<td>1950</td>
</tr>
<tr>
<td>Endovascular thoraco-abdominal aneurism repair</td>
<td>76-119</td>
<td>3800-5950</td>
</tr>
<tr>
<td>64-slice coronary CT</td>
<td>15 (3-32)</td>
<td>750 (150-1600)</td>
</tr>
<tr>
<td>Coronary calcium CT</td>
<td>3 (1-12)</td>
<td>150 (50-600)</td>
</tr>
<tr>
<td>Sestamibi stress test (1 day)</td>
<td>9</td>
<td>450</td>
</tr>
</tbody>
</table>
RADIATION - Deterministic and Stochastic Effect

Biologic Effects of Radiation

<table>
<thead>
<tr>
<th>Deterministic</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hair Loss</td>
<td></td>
</tr>
<tr>
<td>Skin Damage</td>
<td></td>
</tr>
<tr>
<td>Tissue Necrosis</td>
<td></td>
</tr>
<tr>
<td>Cataracts</td>
<td></td>
</tr>
<tr>
<td>Sterility</td>
<td></td>
</tr>
<tr>
<td>Decreased WBC</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stochastic</th>
<th>“Probabilistic”</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetic Defects</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Deterministic effects, which only occur above a certain dose threshold
- Stochastic effects, which have a chance of occurring at any range of dose

Biologic Effects of Radiation: Radiation skin (deterministic) effects

A. Dry desquamation (Poikiloderma) at one month in a patient receiving 11 Gy calculated peak skin dose.

B. Skin Necrosis at 6 months in a patient who received 18 Gy calculated peak skin dose.
PRINCIPLE in RADIATION PROTECTION

ALARA

As Low As Reasonably Achievable

CAUTION
The meaning behind the numbers

Post-procedure
Document radiation dose in records

FT: Fluoroscopy Time
AK: Air Kerma
DAP: Dose-Area Product

<table>
<thead>
<tr>
<th>Exp tr/s</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fluo</th>
<th>19:29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Normal</td>
</tr>
<tr>
<td>1484.90</td>
<td>184522</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AK mGy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1484.90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DAP mGy cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>184522</td>
</tr>
</tbody>
</table>
A Word on Radiation Safety

Precautions to Minimize Exposure to Patient and Operator

- Utilize radiation only when imaging is necessary. Avoid the "heavy foot"

- Minimize use of cine.

- Minimize use of steep angles of X-ray beam. (LAO Cr – AP Cr)

- Minimize use of magnification modes.

- Minimize frame rate of fluoroscopy and cine. (7.5 frames/sec fluoroscopy setting)

- Keep the image detector close to the patient (low subject-image distance)

- Utilize collimation to the fullest extent possible.

- Monitor radiation dose in real time.
NCRP Staff Exposure Limits
(National Council of Radiation Protection - USA)

- Whole Body*
 5 rem (50 mSv)/yr
- Eyes*
 15 rem (150 mSv)/yr
- Pregnant Women
 50 mrem (0.5 mSv)/month
- Public
 100 mrem (1.0 mSv)/yr

*ICRP movement to 20 mSv/yr
1 rem = 10 mSv (0.001 Sv)

Cataract in eye of interventionist after repeated use of over table x-ray tube
www.icrp.org
Post-Procedure Issues

- **Cardiac Catheterization Reports** should include Fluoroscopic Time, and Total Air Kerma at the Interventional Reference Point (IRP) Cumulative Air Kerma (K_{ar}, Gy), and/or Air Kerma Area Product (P_{KA}, Gy/cm²).

- FT is the least useful, P_{KA} multiples of 100 in Gy/cm² of the K_{ar} in Gy.

- **Chart Documentation** following the procedure for K_{ar} doses ≥ 5 Gy.

- **Follow up** at 30 day is required for K_{ar} of 5-10 Gy. Phone calls or visit.

- **For** $K_{ar} > 10$ Gy, a qualified physicist should perform a detailed analysis.

- Contact risk management within 24 hrs for calculated PSD ≥ 15 Gy.

- **Adverse Tissue Effects** is best assessed by history/exam. Biopsy only for uncertain diagnosis as the wound from the biopsy may result in a secondary injury potentially more severe than the radiation injury.
Prevention of Complications

- Proper patient selection
- Proper patient preparation
- Attention to details
- Experience
- Skills

Measures: eg.
- use of low/iso-osmolar contrast
- lower profile diagnostic catheters
- measures to reduce bleeding Etc
CHOLESTEROL EMBOLI

• Cholesterol crystals from friable vascular plaques
• Distal embolization of cholesterol crystals after angiography, major vessel surgery, or thrombolysis causes a systemic syndrome (1)
• Diagnosis is suggested clinically:
 – discoloration of extremities in a mottled purple pattern of livedo reticularis,
 OR digital cyanosis or gangrene, or neurological or renal involvement
• Renal involvement is characteristically slowly progressing over a two to four week period following angiography
• Diagnosis is confirmed by biopsy of affected tissues showing deposition of cholesterol crystals
• Accompanying eosinophilia and elevated C-reactive protein are common laboratory features
• Incidence reported in prospective studies is generally less than 2% (2)
Cholesterol Emboli

• Autopsy reported a much higher incidence = (25-30%)
• many of these events are asymptomatic (3)
• further supported by the discovery of plaque debris from > 50% of all guiding catheters in a prospective study of 1,000 patients (4)
• No significant difference in the risk of atheroembolism between brachial and femoral approaches exists, suggesting that the ascending aorta is the predominant source
• Major risk factors include advanced age, repeat procedures, diffuse atherosclerotic disease, and elevated pre-procedure C-reactive protein. Treatment is mostly supportive but one retrospective study reported decreased incidence of cholesterol emboli with pre-procedural use of simvastatin. (Woolfson & Lachmann, 1998)
• Besides statins, management with steroids and prostaglandins has not resulted in significant benefit

1. (Keeley & Grines, 1998).
2. Fukumoto, Tsutsui, Tsuchihashi, Masumoto, & Takeshita, 2003; Saklayen, Gupta, Suryaprasad, & Azmeh, 1997)
3. (Fukumoto et al., 2003; Ramirez, O'Neill, Lambert, & Bloomer, 1978)
Shapes used for coronary grafts

- Aorta
- Saphenous Vein
- Bypass Grafts
- Left Internal Mammary Artery
- Circumflex Coronary Artery
- Diagonal Branch of LAD
- Left Anterior Descending (LAD) Coronary Artery

Catheter shapes commonly used for aorto-coronary bypass grafts:
- MPA
- MPB
- JR4
- LCB
- RCB
- AL.75
- AL1
- AL1.5
- AL2
- AL3